
NASA/TM-97-104606, Vol. 13

Technical Report Series on

Global Modeling and Data Assimilation

Max J. Suarez, Editor

Goddard Space Flight Center, Greenbelt, Maryland

Volume 13

lnterannual Variability and Potential
Predictability in Reanalysis Products

Wei Min, General Sciences Corporation, Laurel Maryland; and

Siegfried D. Schubert, Goddard Space Flight Center, Greenbelt, Maryland

National Aeronautics and

Space Administration

Goddard Space Flight Center

Greenbelt, Maryland 20771

December 1997



NASA Center for AeroSpace Information

800 Elkridge Landing Road
Linthicum Heights, MD 21090-2934
Price Code: A17

Available from:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161
Price Code: A10



Abstract

The Data Assimilation Office (DAO) at Goddard Space Flight Center and the Na-

tional Center for Environmental Prediction and National Center for Atmospheric Re-

search (NCEP/NCAR) have produced multi-year global assimilations of historical data

employing fixed analysis systems. These "reanalysis" products are ideally suited for

studying short-term climatic variations. The availability of multiple reanaiysis prod-

ucts also provides the opportunity to examine the uncertainty in the reanalysis data.

The purpose of this document is to provide an updated estimate of seasonal and

interannuai variability based on the DAO and NCEP/NCAR reanalyses for the 15 year

period 1980-1995. Intercomparisons of the seasonal means and their interannual vari-

ations are presented for a variety of prognostic and diagnostic fields. In addition, at-

mospheric potential predictability is re-examined employing selected DAO reanalysis
variables.
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1 Introduction

Recently, several efforts have been devoted to the reanalysis of historical data with an un-

varying assimilation system (Bengtsson and Shukla 1988; Schubert et al. 1993; Gibson et

al. 1996). The motivation for these efforts is that operational assimilation systems undergo

frequent updates and thus introduce spurious signals in the analysis output that may con-

taminate the quality of the atmospheric state and its variability particularly at seasonal or

longer time scales. Even the dominant climate events (e.g. the E1 Nifio/Southern Oscil-

lation, ENSO) can be masked by these signals (see, for example, Fig. 10 in Arpe 1990).

This makes the analysis output poorly suited for climate studies. While some quantities

are not sensitive to system changes, others are more susceptible due to their sensitivity to

model formulation, and the weak constraints imposed by limited and/or poor quality ob-

servations. This is particularly true for the hydrological cycle (e.g., Mo and Higgins 1996;

Wang and Paegle 1996; Min and Schubert 1997). The use of a fixed assimilation system

has eliminated some of these problems, however, discontinuities remain in the output as a

result of changes to the observing systems. The main purpose of this document is to pro-

vide an updated estimate of seasonal and interannual variability based on the NASA/DAO

and NCEP/NCAR reanalyses for the 15 year period 1980-1995. Intercomparisons of the

seasonal means and their interannual variations axe presented for a variety of prognostic

and diagnostic fields.

In addition to understanding short term climate variations, one of the major goals of climate

research is the capability to provide useful predictions on seasonal and longer time scales.

Atmospheric predictability is determined by both internal dynamics and the influence of

slowly varying boundary conditions such as sea surface temperature, sea ice, snow cover,

and soil moisture. Numerous studies (e.g. Leith 1978, Lorenz 1982) indicate that, in the ab-

sence of anomalous boundary forcing, the inherent nonlinearity of the atmosphere results in

an rms error-doubling time of about two days, and a current practical limit of useful predic-

tions of about two weeks. On seasonal and longer time scales, however, boundary forcing

has a substantial influence on atmospheric variability. Under the assumption that the vari-

ability induced by internal dynamics is unpredictable on seasonal and longer time scales,

there would still be a potential for predictability of time averages if the variability due to

changes in boundary conditions is sufficiently large compared to that induced by internal

dynamics. Early studies using the operational analysis data sets to assess this potential pre-

dictability (see Section 4 for definitions and discussion of earlier studies) suffered from the

spurious signals introduced by changes in the analysis system and the measurement instru-

ments. In this study, we will also re-examine atmospheric potential predictability using the

NASA/DAO reanalysis data set.

The document is divided into two parts. The first part is focused on the seasonal means

and their interannual variability of selected prognostic and diagnostic fields from both the



NASA/DAOand NCEP/NCARreanalyses.We note that Higgins et al. (1997)haveal-
readypresentedarathercomprehensivecomparisonof meanquantitiesandwithin season
variability from bothreanalyses.This is anextensionof thatwork to includemoreyears,
thetransitionseasons,furtherdiagnosticquantitiesand,in particular,interannualvariabil-
ity. Thesecondpart examinesatmosphericpotentialpredictabilityusingtheNASA/DAO
reanalysis.Theresultsaresummarizedin termsof variances,characteristictime scalesand
signal-to-noiseratio.

Section2 givesa brief overviewof the NASA/DAO and the NCEP/NCARassimilation
systems.Section3 comparesthe seasonalmeansand its interannualstandarddeviation
of selectedquantitiesfrom thetworeanalyses.Theanalysisof atmosphericpotentialpre-
dictabili.tyispresentedin section4. Section5 summarizestheresults.

2 Data Assimilation Systems

In this section, we will give a brief overview on the NASA/DAO and the NCEP/NCAR

data assimilation systems. Detailed descriptions can be found in Schubert et al. (1993)

and Kalnay et al. (1996). There are differences between the two systems in many aspects,

including the model characteristics, the analysis techniques, and the input data. These

differences may at least partially account for the differences in the reanalysis datasets.

2.1 NASA/DAO system

The NASA/DAO dataset (Schubert et. al. 1993) is the multiyear reanalysis produced with

version 1 of the Goddard Earth Observing System (GEOS-1). The general circulation

model (GCM) is described in Takacs et al. (1994) and the analysis system is described

in Pfaendtner et al. (1995). The analysis scheme consists of a 3-dimensional multivariate

optimal interpolation (OI) carried out on 14 standard pressure levels extending from 1000

to 20 hPa. The GEOS-1 GCM is a gridpoint model employing the Aries/GEOS dynamical

core described in Suarez and Takacs (1995). For the reanalysis the GCM was run at a

horizontal resolution of 2*latitude by 2.5* longitude and with 20 sigma levels in the vertical

(top at 10 hPa). The assimilation system does not include an initialization scheme and

relies on the damping properties of a Matsuno time differencing scheme to control initial

imbalances generated by the insertion of observations. However, the initial imbalances and

spin-up have been greatly reduced by introducing an incremental analysis update (IAU)

procedure (Bloom et al. 1996).

The GEOS-1 model has 4 levels below 850 hPa and 4 levels between 100 and 10 hPa

which includes parameterizations of all major physical processes: radiation, convection,

2



large-scaleprecipitation,boundarylayerphysics,andverticalandhorizontaldiffusion. In
theGEOS-1system,theseasurfacetemperature(SST)isupdatedusingthemonthlymean
blendedSSTanalyses(ReynoldsandMarsico1993).Thepenetrativeconvectionisparam-
eterizedusingtheRelaxedArakawa-Schubert(RAS) scheme(Moorthi andSuarez1992).
The soil moisturein theNASA/DAOassimilationsystemis computedoff-line basedona
simplebucketmodelusingobservedmonthlymeansurfaceair temperatureandprecipita-
tion (Schemmet al. 1992).

2.2 NCEP/NCAR system

The NCEP/NCAR reanalysis products were also produced with a fixed assimilation sys-

tem (Kalnay et. al. 1996) consisting of the NCEP Medium Range Forecast spectral model

and the operational NCEP Spectral Statistical Interpolation scheme, a 3-dimensional varia-

tional analysis scheme (SSI; Parrish and Derber 1992) with improved error statistics and a

divergence tendency constrain. The assimilation was performed at a horizontal resolution

of T62 and with 28 sigma levels in the vertical (top at about 3 hPa). The implementation

of SSI in the analysis makes it unnecessary to employ an initialization step. The analy-

sis is performed on the model sigma levels employing mandatory pressure level data, and

significant level winds. The bogus surface data (POABs) from the Australian Bureau of

Meteorology are also assimilated in the NCEP/NCAR system 1

This version of the NCEP spectral model has 7 levels below 850 hPa and 6levels between

100 and 10 hPa which includes parameterizations of all major physical processes, including

radiation (diurnal cycle and interaction with clouds), convection, large-scale precipitation,

shallow convection, boundary layer physics, interactive surface hydrology, gravity wave

drag, and vertical and horizontal diffusion. Details of this model are described in Kana-

mitsu (1989). Recent changes are the use of a simplified Arakawa-Schubert convective

parameterization scheme (Pan and Wu 1994) and a diagnostic cloud scheme (Campana et

al. 1994). The NCEP/NCAR system incorporates the weekly global optimal interpolation

SST analyses (Reynolds and Smith 1994) from 1982-present and the UKMO GISST for

earlier years. The soil moisture is updated during the analysis cycle with a simple soil

model (Pan and Mahrt 1987).

3 Intercomparison

In this section, we compare the seasonal means and their interannual vaiability from the

NASA/DAO and NCEP/NCAR (hereafter we use DAO and NCEP for simplicity) reanal-

1The bogus data were inadvertently incorporated with a 180*phase shift in the NCEP product.



yses for various quantifies. Conventional definitions of seasons are used in this study, i.e.,

December-January-February (DJF) for northern winter season, March-April-May (MAM)

for northern spring season, June-July-August (JJA) for northern summer season, and September-

October-November (SON) for northern fall season. Both the seasonal means and their in-

terannual variability (or more specifically the standard deviation) are based on the 15-year

time period March 1980 through February 1995, which was the time period common to

both reanalyses at the time of this study. The results of the zonally averaged prognostic

fields are presented first. Next the global maps are presented for various fields at selected

levels, including one level in the lower stratosphere. The intercomparison of selected diag-

nostic variables is presented in subsection 3.3. We note that this is primarily intended as an

atlas of seasonal means and their variability, and as convenient reference for assessing the

uncertainties in these quantities based on the differences between the two reanalyses. As

such the discussions of the various figures are rather terse and are intended only to highlight

some of the salient features.

3.1 Zonal mean fields

Figures 1 - 30 present the seasonal means and the interannual standard deviations of zonally

averaged seasonal mean quantities (zonal mean zonal (u) and meridional (v) winds, zonal

mean temperature (T), zonal mean specific humidity (q), and mass streamfunction). The

seasonal means of u-wind are very similar in the two reanalyses. The difference maps

(Fig.3) show, however, that during all four seasons the DAO product has weaker easterlies

in tropics, weaker westerlies in the subtropics and stronger westerlies in the middle and

high latitudes thanth e NCEP pr_uct. The differences in the middle an d high latitudes of

the northern hemisphere are smaller than in the southemhemisphere. The seasonal mean v-

wind has similar patterns in the two reanalyses (Figs. 4 and 5). However, large differences

in the magnitudes are seen in DJ'F and MAM indicating a considerably weaker Hadley Cell

during these months in the DAO product. During JJA and SON the DAO Hadley Cell is

somewhat stronger with the upper branch extending further into the middle troposphere

just north of the equator.

For the zonal mean temperature profiles (Figs. 7-9), the seasonal means clearly show sys-

tematic differences between the DAO and NCEP products; the DAO temperature is warmer

in much of the troposphere and colder than NCEP above 100 hPa and in the middle tro-

posphere (300-500 hPa) near the south pole. The large differences near the surface in the

southern hemisphere (SH) polar region are likely related to the interpolation and extrapo-

lation in regions of high topography. The zonal mean moisture profiles (Figs. 10--12) show

that the DAO product is wetter in the tropical middle troposphere and northern hemisphere

(NH) subtropics near the surface, and drier between the surface layer and approximately

850 hPa. In the midlatitudes, the DAO data is consistently drier than the NCEP product

4



abovethesurfacelayer. TheJJAmoisturedifferencesaresomewhatdifferent from other
seasonswith theDAOwetterin theSHsubtropicsandsubstantiallydrierin theNH middle
andhighlatitudes.Themassstreamfunction(Figs. 13-15)showsthattheDAOproducthas
a strongerHadleycell in JJAandweakerHadleycell in DJF,indicatinga strongerannual
cyclein theDAOdata.This is consistentwith thev-wind resultsshownpreviously.

Theinterannualvariability of theseasonalmeanzonalmeanu-wind (Figs. 16-18) is quite
similar in the two products,exceptin the tropical lower stratospherewherethe NCEP
productshowsconsiderablymorevariability, andin theSH polarregions(Fig.18),where
theDAO productshowsmorevariability.TheDAO productshowsmorevariability in the
v-wind for all seasonsexceptMAM (Figs. 19-21). During thisseasontheNCEPproduct
exhibits its largestvariability,while theDAO producthas the smallestvariability. The
patternsin thetemperaturevariability (Figs.22-24) arequitesimilar in thetwo reanalyses
but largedifferencesareobservedin thetropospherenearthe SH polarregion,with the
DAO product showinggreatervariability. The DAO productshowsconsistentlylarger
variability in themoistureprofiles(Figs. 25-27) andthe massstreamfunction(Figs. 28-
30).
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3.2 Global upper-air fields

3.2.1 Troposphere

Figures 31-102 display the global maps of selected quantities from the DAO and the NCEP

reanalyses. The seasonal means and the interannual standard deviations are presented.

For the mean zonal wind, the DAO and NCEP products are very similar for all seasons. The

largest differences occur near the polar region of the southern hemisphere and in the tropics

at both 200 and 850 hPa (Figs.33 and 36). The DAO wind shows weaker easterlies in the

tropics and stronger westerlies in the middle and high latitudes of the southern hemisphere.

At 200 hPa, both the DAO and the NCEP products show a large seasonal variation in the

interannual variability with a maximum during DJF and a minimum during JJA (Figs.37-

38). A suggestion of tropical/extratropical coupling is also observed, between the central

tropical Pacific and the midlatitudes of both hemispheres, particularly during the DJF. The

differences in the standard deviations between the two datasets are generally small (Fig.39).

The largest differences occur in the polar region of the southern hemisphere. At 850 hPa,

the seasonal variation of the interarmual variability of zonal wind is also evident for both

the DAO and the NCEP reanalyses (Figs.40--41). The maximum variability occurs over

the central and western tropical Pacific. During DJF and MAM seasons, this maximum

spreads over the entire tropical Pacific. Large variability is also seen in other regions, such

as the Pacific and Atlantic storm track regions. The differences between the DAO and

the NCEP indicate that the DAO has substantially larger interannual variability over the

tropical Pacific especially during DYE

Figures 43--51 show the seasonal mean meridional wind and the interannual variability at

200 and 850 hPa. The differences in the seasonal mean reveal rather more complicated

patterns than the zonal wind. Systematic differences are observed at 200 hPa in the tropical

region (Fig.45). Compared to the NCEP product, the DAO product shows stronger norther-

lies over Africa, Indian ocean, northern South America and stronger southerlies over the

central tropical Pacific. The largest differences are observed in the polar region of the

southern hemisphere, which appears to be related to the topography. The differences at 850

hPa are rather noisy, and appear to be associated with topographic features. The merid-

ional wind at both 200 and 850 hPa shows large variability in the middle and high latitudes

of both hemispheres. At 200 hPa the variability is particularly large over western North

America during DJF and SON, and over Europe and southern Asia during DJF. At 850 hPa

the largest variability occurs over the NH polar regions, Europe, and the NH high latitude

Pacific and Atlantic oceans during DJF. Large variability also occurs over the SH high lat-

itude Pacific Ocean during JJA. The differences in the interannual variability between the

two reanalyses show that the DAO in general has larger variability than the NCEP with the

largest differences occurring in the polar region of the southern hemisphere.
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In section3.1,we haveshownthat thezonal meantemperatureprofileshavesystematic
differencesbetweentheDAO andtheNCEPreanalysesin thetroposphereaswell asin the
lowerstratosphere.Here,ourfocus is ontheglobaldistributionsof thetemperatureat 200
and850hPa. The comparisonfor the lower stratospherewill bepresentedin subsection
3.2.2.Thedifferencesin temperatureat200hPashowthattheDAO productis colderthan
theNCEPproductnearthepoleof bothhemispheres,andthattheDAOproductis warmer
than theNCEPproductthroughoutthe tropicsandmidlatitudes(Fig.57). In themidlati-
tudesof thenorthernhemisphere,abandof largenegativedifferences(DAOtemperatures
warmer)is observedfor all seasons.At 850hPa(Fig.60), largenegativedifferencesare
foundin the easternPacificnearthecoastand in the southernIndian Oceanwhile large
positivedifferencesareseenoverthecontinentsnearhighterrain.Fortheinterannualvari-
ability,bothreanalysesshowsimilarpatternsandhavelargeseasonalvariationsat200and
850hPa. In general,largevariability occursat middleand high latitudesin bothhemi-
spheres.At 850hPatheNCEPtemperaturetendsto havemorevariability overthetropical
oceansandin the subtropicsoff the westcoastsof thecontinents,while theDAO temper-
aturetendsto havemorevariability over themiddle latitude oceansandAfrica. At 200
hPatheDAO temperatureis lessvariablethanNCEPin thenorthernhemispherewhile it is
considerablymorevariablethanNCEPoverAntarctica(Figs.63and66).

The meanDAO specifichumidity at 850hPashowsa muchmoreconcentratedtropical
maximumassociatedwith theITCZ comparedwith NCEP(Figs.67and68). The differ-
enceplot (Fig.69) showsthatthe DAO productis drierjust to thewestof the continents
(justoff the equatorover theeasternPacificocean,the Atlantic ocean,andeastof Aus-
tralia), andit is wetterover thewesternPacific,the African continentandtheAmericas.
Thelargestvariability occursin thetropicsandsubtropics(Figs.70-72),with theDAOspe-
cific humidity showingconsiderablymorevariability thanNCEPthroughouttheseasons.
The500hPaeddygeopotentialheightshowslarge(> 10m)differencesin themiddleand
high latitudesof the southernhemisphereandoverthemidlatitudeoceansof thenorthern
hemisphere(Figs.73--75).Theinterannualvariability, in general,showscoherentpatterns
in thetwo reanalyses.However,largedifferencescanbefoundin thepolar regionsof both
hemispheres(Fig.75).

The seasonalmeansof the200hPa eddy streamfunction show substantial differences be-

tween the two reanalyses over the subtropics especially during JJA in the southern hemi-

sphere (Fig.81). For the 200 hPa velocity potential, however, the large differences are found

in the tropical region (30"S-30"N) where heavy rainfall occurs (Fig.84). The stronger gra-

dients suggest that the NCEP system tends to produce stronger deep convection than DAO

over the western Pacific, Indian ocean and the South America continent. Also, NCEP has

stronger subsidence over the eastern Pacific ocean, the eastern Atlantic in the tropics and in

the northern Africa. This indicates a stronger tropical east-west (Walker) circulation in the

NCEP system. For the interannual variability, both reanalyses show large seasonal varia-
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tions in the200hPaeddystreamfunctionwith themaximumvariability occurringduring
DJF inbothhemispheres(Figs.85-87).Thissuggestsanimportantrole for tropical forcing
during this seasonparticularlyovertheeasternPacific.The DAOeddystreamfunctionhas
somewhatlargerinterannualvariability duringDJF overtheeasternsubtropicaloceansof
both hemispheres.Otherwise,thedifferencesaregenerallylargerin the southernhemi-
spherethanin thenorthernhemisphere.For the 200 hPavelocity potential (Fig.88-90),
the largestvariability occursin thetropicswith maximaoverthe westernPacificand the
easternPacificnearthecoastof theAmericancontinent.TheDAO velocity potentialhas
lessvariability overthe southernIndianoceanandthe centralandeasternPacificOcean
andmorevariabilityoverthemonsoonregion.

Thedifferencesin theseasonalmeansof themeansealevelpressure(Figs.91-93) largely
follow thetopography,suggestingdifferencesin themodeltopographyandthe algorithm
usedto reducethe surfacepressureto the sealevel. The _nter_ual variability generally
has the samepatternas500 hPageopotentialheight, showinglargevariability nearthe
preferredregionsof persistentatmosphericanomalies.The differencesbetweenthe two
reanalysesindicatelargervariability in theDAO sealevel pressure,particularly nearthe
polar regions.

Theseasonalmeantotalprecipitablewaterdifferences(Fig.99)betweenthetworeanalyses
aresimilar to thosefor the850hPaspecifichumidity (Fig.69). In general,theDAO prod-
uct showsa moreconcentratedtropicalmaximum. The DAO:atm0sphereis wetter than
NCEPover thecentralandwesternPacific,the tropical Indian ocean,Africa, the South
Americancontinent,andIndia andsoutheasternAsia, and it is drier thanNCEPwestof
Australia,theeasternPacificoceanandthetropicalAtlanticoce_. Thelargestinterannual
variability occursovertheoceanwith maximaoverthecentralandeasternPacific(Fig.100
and 101).Thedifferencesin the interannualstandarddeviationindicatethattheDAO has
substantiallylargervariabilitythantheNCEP.
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3.2.2 Stratosphere

We look in this section in more detail at the differences between the two reanalysis in the

lower stratosphere. Neither system has a highly resolved stratosphere. This is particularly

true for this version of the DAO assimilation system (GEOS-1) which has 20 model levels

and a top at 10 hPa. We note that the new version of the DAO system does have a well

resolved stratosphere with 70 model levels and a top at 0.01 hPa. We have already shown

that the zonal mean fields in both wind and temperature (Figs.3 and 9) have substantial

systematic differences between the DAO and the NCEP products in the lower stratosphere.

In the following, we will examine the global distributions of the zonal wind and temperature
at 50 hPa.

The seasonal mean zonal wind at 50 hPa shows distinct seasonal variations (Fig. 103-104).

Westerlies prevail in the northern hemisphere during DJF while strong easterlies occur in

the subtropics of the southern hemisphere. This structure is reversed in JJA with the corre-

sponding westerlies considerably stronger in the southern hemisphere high latitudes. The

transition seasons show a more symmetrical structure with respect to the equator, with east-

erlies in the tropics and westerlies in the extratropics. The differences between MAM and

SON are largest in the southern hemisphere extratropics which show considerably stronger

westerlies during SON. The differences between the reanalyses (Fig.105), in general, show

positive values in the subtropical region of the northern hemisphere and negative values

in the subtropical and polar regions of the southern hemisphere. The interannual standard

deviation of 50 hPa u-wind shows large seasonal variations in the middle and high latitudes

(Figs.106 and 107). Large variability is observed in the tropics with maximum over the

western Pacific, which is likely associated with the Quasibiennial Oscillation (QBO). The

difference between the two reanalyses shows that the DAO has larger variability than the

NCEP except for the tropical western Pacific and the tropical Indian ocean. The largest

differences are found in the tropical central and eastern Pacific.

The seasonal mean temperature at 50 hPa shows large seasonal variations with a warm

pole in the summer hemisphere (Figs.109 and 110). There is evidence of noise near the

pole in the DAO datasets for all seasons. NCEP shows consistently warmer temperature at

50 hPa over the entire globe (Fig. 111). Generally, large interannual temperature variability

is found in the high latitudes during the winter seasons. The transition seasons show some

asymmetry with the largest variability occurring in the northern hemisphere during MAM,

and in the southern hemisphere during SON. The differences in the variability between the

two reanalyses are small (Figs.112-114).
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3.3 Global diagnostic fields

In this subsection, we will compare the seasonal means and the interannual variability of

the seasonal means for selected diagnostic quantities.

The precipitation shows a clear seasonal evolution in the tropics as well as in the subtropics

(Figs. 115 and 116). Key features include the boreal winter precipitation in the storm track

regions, the Indian summer monsoon rainfall, and the enhancement of summer rainfall over

land. The largest differences between the two reanalyses are in the vicinity of heavy tropical

rainfall where the DAO product generally has more rainfall than NCEP. The NCEP system

generates more precipitation over the storm tracks. There is also considerable small scale

noise in the NCEP product at high latitudes. The largest interannual variability is found

in the normally heavy rainfall regions of the tropics and the subtropics. Large interannual

variability is also observed over the northern Europe, eastern Asia and the eastern coast of

the United States during IIA. The difference field (Fig. 120) shows that the DAO rainfall

has larger interannual variability than NCEP in the regions of heaviest tropical rainfall.

Figures 121-126 show the seasonal mean and interannual variability of the outgoing long-

wave radiation (OLR) of the two reanalyses. The differences in the seasonal means (Fig.123)

again suggests that in the tropics and subtropics the DAO system generates stronger convec-

tion (and higher clouds) than the NCEP system. The extratropical differences are largely

negative. This is especially evident over the storm tracks, consistent with the generally

greater rainfall in the NCEP product in these regions. The largest variability occurs in the

tropics and subtropics with a maximum in the western Pacific regions. Again, the NCEP

product shows less variable than the DAO throughout the year.

The evaporation depends on the magnitude of the surface wind, the vertical moisture gradi-

ent near the surface and the surface layer stability. Since the techniques used in determining

evaporation are very similar in the two reanalyses, the differences in the evaporation reflects

differences in the surface wind or the vertical moisture gradient near the surface. In general,

the DAO product shows less evaporation over most of the ocean area and more evaporation

over land (Fig.129). The interannual variability is generally small and spotty (Figs.130 and

131). The largest differences in the variability occur over land, where the DAO product

shows consistently larger values.

The sensible heat flux is determined by the magnitude of the surface wind, the vertical

temperature gradient near the surface and the surface roughness. In general, the sensible

heat flux is from the surface to the atmosphere except for regions covered with snow or ice

(Figs.133 and 134). The main differences between the two reanalyses occur over land, and

over ocean where SST gradients are the largest (Fig.135). The DAO has larger sensible

heat flux over land and less over the Gulf Stream and the Kuroshio current. The differences

of the sensible heat flux over the ocean may reflect in part the differences in the sea surface
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temperature(SST)betweenthetwo reanalyses.TheSSTdatasetusedin theDAO incor-
poratesthemonthlymeanblendedSSTanalysesof RenoldsandMarsico(1993)while the
NCEPusesthetheimprovedweeklyglobaloptimuminterpolatedSSTanalysesof Renolds
andSmith(1994).The majordifferencesbetweenthetwo SSTdatasetsarein regionsof
largeSSTgradients,suchas theGulf Streamandthe Kuroshio. The largest interannual

variability in the sensible heat flux occurs over land, and in the regions with large SST

gradients and the ocean area near the south pole where the variability is associated with the

migration of the sea ice concentration (Figs. 136 and 137). Figure 138 shows that the DAO

sensible heat flux has generally larger variability than NCEP--exceptions include the Gulf

Stream and Europe during DJF and MAM.

Figures 139-144 show the seasonal means and the interannual standard deviations of tem-

perature at 2 meters. The seasonal means are similar in the two reanalyses. However, large

differences are observed over the cold season middle and high latitude continents of both

hemispheres (Fig.141), with considerably colder temperatures in the DAO product. Both

reanalyses show a large seasonal cycle in the regions of maximum variability. Note also

that there is a local maximum of interannual variability over the tropical eastern Pacific.

This is likely linked to the ENSO phenomenon. The differences map shows that the DAO

two meter temperature generally has larger variability than NCEP.

The seasonal means of the 10 meter zonal wind show similar pattems in the two reanalyses

with the largest differences occurring near the polar regions, the coastal regions and the

central tropical Pacific (Figs.145-147). The main features in the seasonal means of the 10

meter wind are the prevailing easterlies in the tropics and subtropics with maxima off the

equator, and the westerlies in the midlatitudes. Large interannual variations are observed

in the storm track regions, such as the North Pacific, the North Atlantic and the east of

New Zealand. Large variability is also found in the central and western Pacific which may

be linked to ENSO variability. The difference map, while noisy, shows a tendency for

the DAO winds to have larger variability over the tropics and subtropics, while the NCEP

winds have greater variability over the extratropics.
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4 Potential Predictability

Leith (1973) conceptualized the problem of climate predictability by analyzing the signal-

to-noise ratio in the time averages and stated that the noise in the climate means is closely

dependent on the persistence in the daily Weather fluctuations. Madden (1976)pioneered

the study of potential predictability of the atmosphere by examining the mean sea level

pressure in the Northern Hemisphere using a 74-year dataset. He concluded that there is

little potential predictability between 40°N and 60°N in all seasons and that potential pre-

dictability increases to the north and south of this mid-latitude band. In a similar study,

Madden and Shea (1978) showed that there is fairly strong evidence for potential pre-

dictability in surface temperature over the United States in the winter season but less in

other seasons. Shukla and Gutzler (1983), using 15 years of NMC analyzed 500 hPa height

in the northern hemisphere, showed stronger evidence for potential predictability in January

and July, though the distribution of the ratio of interannual to intraseasonal variability has

the same characteristics as that in Madden (1976). These differences illustrate the sensitiv-

ity of the results to the methods employed for estimating potential predictability (Zwiers

1987). Further aspects of the sensitivity will be examined below.

In this section, we document the interannual variability and seasonal potential predictability

in the DAO reanalysis products. The approach basically follows the formulation given in

Trenberth (1985b). The current study, however, employs a fit to an autoregressive process

to estimate the autocorrelation which, in turn, is used to determine the characteristic time

scales. The data and a brief description of the methodology are given in subsection 4.1.

The results are presented in subsection 4.2.

4.1 Data and data processing

a. Data

The data consist of the daily averages of mean sea level pressure (SLP), 500 hPa geopo-

tential height, 200 hPa stream function and 200 hPa velocity potential generated from the

DAO multiyear reanalysis for the 15 year period of March 1980--February 1995 (Schubert

et al. 1995). The daily mean values were computed from the 6-hourly fields sampled at a
resolution of 2 ° lat x 2.5" Ion.

b. Annual cycle

The 15-year mean annual cycle of the daily data is represented by a truncated Fourier

expansion (Madden 1976; Madden and Shea 1978). The full amplitudes of the first four

harmonics were included and harmonics five through seven were weighted by 0.75, 0.50,

and 0.25 respectively. The smoothed annual cycle was then used to generate the anomalies
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by removingthe annualcycle from thedaily data. Note that these anomalies retain any

interannual variations. Figure 151 gives an example of the original and truncated Fourier

representation of the mean annual cycle of the 500 hPa geopotential height at 60°N and
150°W.

Conventional seasons were used for the northern spring (March, April and May : MAM),

summer (June, July and August : JJA), fall (September, October and November : SON)

and winter (December, January and February : DJF).

c. Estimating the autocorrelation

For the anomaly time series, {xi,j}, the autocovariance for a particular season at lag L for

the jth year is estimated by

where

1 N-L

Cj(L) = -_ _ (xi,j - _j)(Xi+L,j -- _j), (1)
i----1

1 N

_'J _ -N E Xi,j _
i--1

and N is the sample size (number of days in the season). Then mean autocovariance and

autocorrelafion over J years are given by

1 J

C(L) = -_ _ Cj(L), (2)
j=l

and

C(L)
p(L) = C(0)' (3)

respectively. Jones (1975) and Trenberth (1985) note that the p(L) estimate from (1)-(3) is

unreliable at large lags for small sample sizes. In this study, we employ an autoregressive

process to fit the autocorrelation (e.g. Jones 1975). Figure 152 shows an example of the

autocorrelation calculated from (3) and the first and second order AR fits. In general, the

second order AR model fits the time series better than a red noise approximation (first order

AR process).

d. Definition of potential predictability

There are generally two approaches to estimating potential predictability: one in the time

domain (e.g., Trenberth 1985b) and another in frequency domain (e.g., Madden 1976; Mad-

den and Shea 1978; Zwiers 1986). Th two approaches are essentially similar. The method

used in this study is described in detail in Trenberth (1985b) and outlined below.

163



For eachseasonof yearj, there are N daily values, xi,j, with the mean annual cycle re-
moved. An unbiased estimate of the interannual variance is

-2 J__ 2

= J-li=lZJ= j-lsm'
(4)

where

1 J
_Z -2

Srn = j xj.
j=l

(5)

This is a measure of the climatic signals. In order to test whether there is a significant

contribution from potentially predictable sources, we need to estimate independently the

variance due to the noise in the time averages. The noise is the high frequency variability

of the daily mean values.

The variance of the seasonal means due to climate noise, O'_v, is given

0 "2 o.2Zo

a_ = N_f-"'_ = _' (6)

where o.2 is the unbiased estimate of total variance, N_ff is the effective number of indepen-

dent observations, and To the characteristic time between independent samples as defined

in Leith (1973)as

To = i+ 2 _(i - )p(L). (7)
L--1

The estimate of To is sensitive to the estimate of autocorrelation at lag L, as it is shown in

Fig.153. Different estimates of the autocorrelation result in very different To values. For

example, the T0 values calculated from the first order AR model are very different from

those based on the original sample estimates of the autocorrelation.

An unbiased estimate of o.2 based on intraseasonal variances is given by

N
o.2_ s2, (8)

N-To

where s 2 is the mean intraseasonal variance and is given by

1 J

$2 __ ._j (9)
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andwhere
1 U

The variance due to climatic noise is

(10)

T0 ,32

a_v = _ . (11)

Under the null hypothesis that there is no potentially predictable signal, the ratio,

2
(7"m

F = zz-, (12)
(YN

will approximately follow an F distribution with J-1 and J(Ne.tl-1) degrees of freedom.

The null hypothesis will be rejected if F > F_ where Fc is the critical value of F at an

appropriate significant level.

4.2 Results

a. Intraseasonal variances

Figures 154 - 157 show the intraseasonal variances of the 500 hPa height, sea level pres-

sure, 200 hPa stream function and 200 hPa velocity potential for the four seasons. The

seasonal variations of the variances of the 500 hPa height, SLP and 200 hPa stream func-

tion are larger in the northern hemisphere than in the southern hemisphere. In the northern

hemisphere, the winter (DJF) has the largest variability while the summer (JJA) has the

least variability. The height field (Fig. 154) shows three centers of large variability over

the North Pacific/Gulf of Alaska, the North Atlantic extending over Europe, and the Arc-

tic. This is consistent with previous studies using the NMC analysis (e.g., Blackmon 1976;

Blackmon et al. 1986; Min and Kung 1997). The transition seasons show similar variabil-

ity patterns, with somewhat larger variability over Europe and eastern Asia during SON.

For the southern hemisphere, the seasonal variation is weaker with maximum variability

occurring during JJA over the South Pacific. The regions of large variability are consistent

with those found in Trenberth (1985b). That study was based on about 8 years of 0000

UTC analyses from Australian World Meteorology Center. The pattern of the intraseasonal

variance is, however, more zonally symmetric than in the Northern Hemisphere, with the

maximum variability occurring at about 60* S.

The regions of high SLP variability (Fig. 155) are similar to those of the height field, though

the location of the maxima tend to be displaced somewhat to the east with respect to the

height variance maxima. The regions of high stream function variability (Fig. 156) tend
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to be displaced equatorward of the height variances, and are more closely identified with

fluctuations in the major subtropical and midlatitude jet streams. The 200 hPa velocity

potential shows large variability in the tropics with large seasonal variations (Fig.157).

For DJF, the maximum is located over the tropical Indian Ocean. In contrast, JJA shows

substantially weaker variability over the Indian Ocean and somewhat stronger variability

over central America, and just east of Australia. There is a large difference in the variance

for the transition seasons, with a broad tropical maximum in variability for MAM and

much weaker tropical variability during SON with the maximum over the Indian Ocean.

In general, the MAM variability is more like DJF, while the SON variability is more like

JJA. It is likely that a substantial fraction of the intraseasonal variances in 200 hPa velocity

potential comes from the 40-50 day oscillation (Madden and Julian 1972). We note that

this variance is treated as climatic noise in the estimate of potential predictability in this

study.

b. lnterannual variances

The interannual variability is shown in Figs.158-161. The maxima in the height and SLP

variance occur over the North Pacific, the North Atlantic, the Arctic, and the South Pacific

near 120* S. The Northern Hemisphere has a large seasonal variation with relatively large

variability occurring during DJF and very weak summer time variability. The Southern

Hemisphere shows less season variation in the variance with, however, the weakest variance

again occurring during the summer. These results are consistent with earlier studies (e.g.,

Madden 1976; Trenberth 1985b) for both the winter and summer seasons. In the northern

hemisphere, interannual variance maxima tend to be displaced equatorward of the maxima

in the intraseasonal variances, while in the southern hemisphere they are displaced to the

south. The interannual variance is about 1/4 of the intraseasonal variance.

The interannual variance of the 200 hPa stream function is largest during DJF. During both

DJF and MAM the meridional sequence of variance maxima in the central/eastern Pacific

suggest a coupling between the tropics and extratropics. Maxima in variance also occur

over the Gulf of Alaska, Southeast Asia, the Arctic, the North Atlantic, and the South

Pacific (southeast of New Zealand). During JJA, the interannual variability is substantially

reduced with the largest variability apparently tied to fluctuations in the subtropical jets.

The variability is also weak during SON, except for a local maximum which occurs east of

Australia in the region of the South Pacific Convergence Zone (SPCZ).

The interannual variance of the 200 hPa velocity potential is primarily concentrated in the

tropics. Surprisingly, the transition seasons (MAM and SON) show the largest variability.

The major maxima in Variance during MAM occur over the western Pacific and the Ameri-

cas, while during SON the primary maximum is located over Indonesia and Australia, with

a secondary maximum located over the central Pacific. During DJF there is a broad maxi-
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mumacrossthetropicalPacificwhich extendsinto middle latitudesoverboththewestern
PacificandMexico.Thevariability issubstantiallyreducedduringJJA,with weakmaxima
overIndia, southernAfrica, andthecentraltropicalPacific.

c. Characteristic time scales

Previous studies have presented To values for sea level pressure (Madden 1976), surface

temperature (Madden and Shea 1978), and geopotential height (Shukla and Gutzler 1983)

in the northern hemisphere. Trenberth (1985a) provided To values for 500 hPa and 1000

hPa height in the southern hemisphere. Stefanick (1981) presented global distributions of

an "integral time scale" (_ ½To) for wind, temperature and geopotential height at different
levels for DJF. In view of the sensitive of the characteristic time scale to the estimate of

autocorrelation we have examined several different estimates and found that a second order

AR process provides in many cases an improved estimate (see section 4.1 c and references

cited therein).

Figures 162-165 show the characteristic time scales obtained by fitting the data with an

AR(2) process. The results are generally consistent with previous studies for the 500 hPa

height and SLP for DJF and JJA seasons (e.g., Madden 1976; Stefanick 1981; Shukla

and Gutzler 1983; Trenberth 1985a). In general, To ranges from 2 days to more than

one week with minima in the midlatitudes in both hemisphere and maxima in the tropics

and polar regions. During the northern winter (DJF), the To values for 500 hPa height

and SLP are larger than 6 days over the eastern North Pacific and North Atlantic regions.

These are the preferred regions of winter blocking. Regions with relatively smaller To

correspond to regions of frequent cyclogenesis. Also during DJF, the tropical height field

is characterized by a very narrow band (centered on the equator) of long time scales (greater

than 5 days) extending eastward from eastern Africa across South America. In view of the

small fluctuations of the height field in the deep tropics, these estimates may not be very

reliable. For the SLP, the long tropical time scales cover a broader band with the longest

time scales (greater than 7 days) occurring over Indonesia and the western Pacific. During

JJA and SON the largest tropical time scales in the SLP are over the Indian Ocean and

the western Pacific, while during MAM the region of long tropical time scales moves east,

extending from Indonesia across the Pacific.

The To values of the 200 hPa stream function show characteristics similar to the 500 hPa

geopotential height and the sea level pressure in the middle and high latitudes for all sea-

sons, though the values tend to be larger (e.g. about 2 weeks over Antarctic during DJF).

The major differences are in the subtropical and the tropical regions. The To values show

a narrow band of minimum To along the equator with maxima in the subtropics of both

hemispheres for all seasons but JJA. The 200 hPa velocity potential generally shows time

scales of one to two weeks throughout much of the tropical and subtropical eastern hemi-
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spherefor all seasonexceptJJA.DJF andMAM patternsarequite similarwith long time
scalesextendingfrom thetropicspolewardto +/-60* in someregions.During thenorthern
summer,the longesttime scalesare foundoff theeastcoastsof Asia andNorth America,
andovertropicalSouthAmerica.

d. Signal-to-Noise Ratios

Figures 166-169 present the F-ratios (signal-to--noise ratios) computed from (12) for the

500 hPa geopotential height, SLP, 200 hPa stream function and velocity potential for all

seasons. Following Jones (1975), we make the null hypothesis that there is no potentially

predictable signal in the data. The ratio (12) then has an F distribution. Regions where the

ratio is larger than the critical value for a given significant level are considered potentially

predictable. For convenience, we take everywhere values of the F-ratio less than 2 to in-

dicate regions with no potential predictability. This is based on the fact that at the 97.5%

confidence level, Fc is approximately 2.0 for the 200 hPa stream function in DJF over

Antarctica: this represents the worst case from a statistical sampling point of view, since it

has the longest time scales and therefore has the smallest number of effective samples.

For the 500 hPa geopotential height (Fig.166), the largest values of F-ratio are found in the

tropical regions (20"S-20°N), highlighting the importance of SST forcing of the tropical

atmosphere. This region of large signal-to-noise ratios is consistent with the findings of

Schubert et al. (1997). That study found substantial coherence extending well into the up-

per troposphere between the tropical temperature from the reanalysis and the temperature

from a simulation employing the observed SSTs as boundary conditions. In the extratrop-

ics, the small signal-to-noise ratios are generally consistent with Shukla and Gutzler (1983)

for the northern hemisphere, and with Trenberth (1985b) for the southern hemisphere. We

note, however, the F-values do exceed 2 throughout much of the northern extratropical

oceans for all seasons except JJA, at which point the values greater than 2 tend to shift

to the summer continents. In the Southern Hemisphere, signal-to--noise ratios exceeding

4 are found extending eastward from Australia into the central South Pacific. These sig-

nals, which may be related to the Southern Oscillation (Trenberth 1976; Nicholls 1981; Van

Loon 1984), were not evident in the Trenberth (1985b) study. For the northern hemisphere

winter season, the major differences between the current results and those of Shukla and

Gutzler (1983) are over the central and eastern United States and over the North Atlantic

(see Fig.2 in Shukla and Gutzler i983). The large F values over the central and eastern

United States in Shukla and Gutzler are not found in the current study, while Shukla and

Gutzler do not obtain the large F values over the North Atlantic where persistent anomalies

or blocking events tend to occur.

The sea level pressure (SLP) depicts similar patterns ofF values as the 500 hPa geopotential

height in the middle and high latitudes of both hemisphere (Fig.167). In the subtropical and
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tropical regions,however,localmaximaareobserved.For example,during the northern
winter (DJF) largeF values are found over the southeastern Pacific, the western Pacific

region, the Indian ocean, and the southern Atlantic ocean. During the northern summer

(JJA), large F values are observed over Africa, the central Pacific, and just off the coast

of Peru. Large values over southern Asia and the southwestern United States are likely
associated with the summer monsoons.

Figures 168 and 169 show the F values of the 200 hPa streamfunction and velocity poten-

tial. For the 200 hPa streamfunction, two regions of locally enhanced F values straddle the

tropical central Pacific for all seasons. These regions of enhanced signal-to-noise move

east/west and change strength with the seasons. During DJF they are located just east of

the dateline. During MAM, the patterns are slightly to the east of th DJF position and

have weaker signal-to-noise ratios. During J'JA the signal-to-noise ratios are smallest and

located in the western and central Pacific. During SON the regions have the largest signal-

to-noise ratio and are located in the central Pacific. Large F values also occur over the

tropical/subtropical Atlantic during DJF, MAM and JJA. Surprisingly large F values also

occur over much of the Southern Hemisphere middle latitudes during DJF.

The velocity potential exhibits large seasonal variations of the F values. During DJF the

largest F values are located over the eastern Pacific extending across North America, and

over Antarctica. During MAM the high F values have switched from the Antarctica to the

North Polar region, and the eastern Pacific region of high F values has moved further east

to cover most of the Americas. During JJA the highest signal-to--noise ratios are located

over the central Pacific and the high latitudes of both hemispheres. The largest F values

during SON are located over Australia.
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5 Summary

The results presented in this document are intended as an updated arias of seasonal and

interannual variability. The results are based on a 15-year period from March 1980 to

February 1995 employing assimilated data (the NASA/DAO and NCEP/NCAR reanalyses)

which do not suffer from artificial climate signals introduced by system changes typical of

operational analyses. Thecomparisons between the two reanalyses serve to assess the

quality and consistency of the various quantities at seasonal and longer time scales.

The results show that, in general, the seasonal means of the prognostic fields are consis-

tent in the two reanalyses. However, systematic differences do occur even in the zonal

wind and temperature fields. For example, the DAO product shows a consistently colder

lower stratosphere than the NCEP product. The largest differences tend to occur over re-

gions where observations are sparse, though it is not clear how many of these differences

are associated with model bias, the input observations, or the analysis techniques. In par-

ticular, differences in the weighting of conventional and satellite observations may play

an important role. Systematic differences in the moisture are found throughout the tropo-

sphere with the largest occurring in the lower levels which contribute substantially to the

differences in the hydrological cycle. These differences also occur largely over data sparse

regions, such as the tropical oceans and South America. Since the current analyses only

use radiosonde moisture observations it is expected that the incorporation of alternative

high quality sources of moisture observations will have a major positive impact on future

reanalyses.

The differences tend to be largest for the diagnostic quantities (especially those involving

the hydrological cycle) and those quantities involving the divergent wind. For example,

the mass streamfunction in the DAO system is stronger than in the NCEP system during

the northern summer (JJA) while the opposite is true during the northern winter (DJF).

The key moisture source terms also show substantial differences. For example, the tropical

precipitation is consistently larger in the DAO product, especially over the Pacific warm

pool. The NCEP/NCAR evaporation is larger over the oceans compared to the DAO and

less than the DAO over land during the warm seasons.

While it is clear there are still substantial bias' in the reanalysis fields, the most promising

products of the reanalysis are the estimates of interannual variability. This is potentially the

major improvement over the operational products, though it must be pointed out that the in-

homogeneities in the observations can still induce spurious signals. The comparisons show

that, in general, the differences in the wind and temperature variability tend to be small,

except in the lower stratosphere and the high latitudes of the Southern Hemisphere. On the

other hand, the variability of the Hadley Cell is quite different in the two reanalyses with

the DAO product showing consistently stronger interannual variability. The variability of

the moisture also shows substantial differences with consistently greater variability in the

189



DAOmoisturefield.Similarly,variousnearsurfacequantitiesandsurfacefluxesexamined
hereshowsubstantialdifferencesin variability. Thesequantitiesareonly indirectly con-
strainedby theobservations,anddependstronglyon thephysicalparameterizationsof the
assimilatinggeneralcirculationmodels.While in mostcasesthepatternsof variabilityare
similar,theDAO productsshowa tendencyfor largervariability than theNCEPproducts
in boththetropicsandthemidlatitudes.Theseresultssuggestssubstantialuncertaintystill
existsin the estimatesof seasonalvariability,especiallyin the diagnosticquantities.We
notethatotherstudies(e.g.Schubertet. al. 1995;Min andSchubert1997)suggestgreater
agreementand/ormoreaccurateestimatesof variability on monthly time scales,andof
variability associatedwith extremeevents.

Finally, wehavere-examinedatmosphericpotentialpredictabilitywith selectedvariables
from theDAOreanalysisproducts.Theresultsaregenerallyconsistentwith previousstud-
ies in thatpotentialpredictability is smallestin the midlatitudes(40*-60*) of bothhemi-
spheresand increasesboth to thenorthand south. On theotherhand,the useof the re-
analysisdata,andcarefulfitting of theautocorrelation,appearto haveprovidedimproved
estimatesof thesignal-to--noiseratio,whicharemoreconsistentwith knownclimatesig-
nals. For example,we findenhancepotentialpredictabilityoverAustraliaandtheSouth
Pacific,apparentlylinked to theSouthernOscillation.Wehavealsoseena strongseasonal
cyclein thepotentialpredictabilityof mostquantitiesexaminedhere.For example, the sea-

sonal evolution of patterns of strong signal-to-noise ratios tied to the tropical SSTs can be

tracked across the Pacific during the course of the annual cycle. These estimates appear to

be sufficiently reliable to now provide a basis for assessing the veracity of signal-to-noise

ratios generated with general circulation models.

Acknowledgments. This work was supported by NASA's Earth Observing Systems (EOS)

projects on 4D data Assimilation and Computing.

190



References

Arpe, K., 1990: Impacts of changes in the ECMWF analysis-forecasting scheme on the

systematic error of the model. Ten years of medium-range weather forecasting, Vol-

ume I, 4-8 September, 1989. European Center for Medium Range Weather Forecasts,

Shinfield Park, Reading/Berks., RG2 9AX, England.

Bengtsson, L. and J. Shukla, 1988: Integration of space and in situ observations to study

global climate change. Bull. Am. Meteor. Soc., 69, 1130-1143.

Blackmon, M.L., 1976: A climatological spectral study of the 500 mb geopotential height

of the Northern Hemisphere. J. Atmos. Sci., 33, 1607-1623.

Blackmon, M.L., S.L. Mullen, and G.T. Bates, 1986: The climatology of blocking events

in a perpetual January simulation of a spectral general circulation model. J. Atmos.

Sci., 43, 1379-1405.

Bloom, S. C., L. L. Takacs, A. M. DaSilva and D. Ledvina, 1996: Data assimilation using

incremental analysis updates. To appear in Mon. Wea. Rev.

Campana, K.A., Y.-T. Hou, K.E. Mitchell, S.-K. Yang and R. Cullather, 1994: Improved

diagnostic cloud parameterization in NMC's global model. Preprints, lOth Conf. on

Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc, 324-325.

Gibson, R., P. Kallberg and S. Uppsala, 1996: The ECMWF reanalysis (ERA) project.

ECMWF Newsletter, 73, 7-16.

Higgins, R. W., K. C. Mo and S. D. Schubert, 1996: The moisture budget of the cen-

tral United States in spring as evaluated in the NMC/NCAR and the NASA/DAO

reanalyses. Mon. Wea. Rev., 124, 939-963.

Higgins, R. W., Y.-P. Yao, M. Chelliah, W. Ebisuzaki, J. E. Janowiak, and C. E Ro-

pelewski, 1997: Intercomparison of the NCEP/NCAR and the NASA/DAO Reanal-

yses (1985-1993). NCEP/Climate Prediction Center ATLAS No.2, 169pp.

Jones, R. H., 1975: Estimating the variance of time averages. J. Appl. Meteor., 14, 159-
163.

Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, J. Derber, L. Gandin, S.

Sara, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J.

Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A Leetma, R. Reynolds, R Jenne,

1995: The NMC/NCAR Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437-471.

Kanamitsu, M., 1989: Description of the NMC global data assimilation and forecast sys-

tem. Weather Forecasting, 4, 334-342.

191



Leith, C. E., 1973:The standarderror of time-averageestimatesof climatic means.J.

AppL Meteor. 12, 1066-1069.

Leith, C. E., 1978: Objective methods for weather prediction. Ann. Rev. Fluid Mech., 10,

107-128.

Lorenz, E. N., 1982: Atmospheric predictability experiments with a large numerical

model. TeIlus, 34, 505-513.

Madden, R. A., 1976: Estimates of the natural variability of time-averaged sea level pres-

sure. Mon. Wea. Rev., 104, 942-952.

Madden, R.A. and P. Julian, 1972: Description of global-scale circulation cells in the

tropics with a 40-50 day period. J. Atmos. Sci., 29, 1109-1123.

Madden, R.A. and. D.J. Shea, 1978: Estimates of the natural variability of time-averaged

temperature over the United States. Mon. Wea. Rev., 106, 1695-1703.

Min, W. and E. C. Kung, 1997: A spectral analysis of wave activities and blocking in the

northern hemisphere winter. Te_ Atmos. Ocean Sci., 8, 69-94.

Min, W. and S.D. Schubert, 1997: The climate signal in regional moisture budgets: A

comparison of three global data assimilation products. J. Climate, 10, 2623-2642.

Mo, K. C. and R. W. Higgins, 1996: Large scale atmospheric water vapor transport as

evaluated from the NMC/NCAR and the NASA/DAO reanalyses, or. Climate, 9,

I531-I545.

Moorthi, S. and M. J. Suarez, 1992: Relaxed Arakawa-Schubert: A parameterization of

moist convection for general circulation models. Mon. Wea. Rev., 120, 978-1002.

Nicholls, N., 1981: Air-sea interaction and the possibility of long-range weather predic-

tion in the Indonesian Archipelago. &Ion. Wea. Rev., 100, 2435-2443.

Pan, H.-L. and L. Mahrt, 1987: Interaction between soil hydrology and boundary-layer

development. Bound.-Layer Meteor., 38, 185-220.

Pan, H.-L. and W.-S. Wu, 1994: Implementing a mass flux convection parametedzation

package for the NMC medium-range forecas t model. Proceedings of the Tenth Con-

ference on Numerical Weather Prediction, Portland, Oregon, 96-98.

Parrish, D. E and J. C. Derber, 1992: The National Meteorological Center's spectral

statistical interpolation analysis system. Mon. Wea. Rev., 120, 1747-1763.

Reynolds, R. W. and D. S. Marsico, 1993: An improved real time global sea surface

temperature analysis. J. Climate, 6, 114-119.

192



Reynolds,R.W. andT.M. Smith,1994:Improvedglobalseasurfacetemperatureanalyses
usingoptimuminterpolation.J. Climate, 7,929-948.

Schubert, S. D., J. Pfaendtner and R. Rood, 1993: An assimilated data set for Earth Sci-

ence applications. Bull. Am. Meteor. Soc., 74, 2331-2342.

Schubert, S. D., C.-K, Park, C.-Y. Wu, W. Higgins, Y. Kondratyeva, A. Molod, L. Takacs,

M. Seablom. R. Rood, 1995: A multiyear assimilation with the GEOS-1 system:

overview and results. NASA Tech. Memo. No. 104606, Volume 6, 183pp. [available

from Goddard Space Flight Center, Greenbelt, MD 20771.]

Schubert, S. D., W. Min, L. Takacs, and J. Joiner, 1997: Reanalysis of historical observa-

tions and its role in the development of the Goddard EOS climate data assimilation

system. Adv. Space. Res., 19, 491-501.

Schemm, J.-K., S. Schubert, J. Terry and S. Bloom, 1992: Estimates of monthly mean soil

moisture for 1979-89, NASA Tech. Memo. 104571, pp 252, Oct. 1992. [Available

from Goddard Space Flight Center, Greenbelt, MD 20771.]

Shukla, J., 1983: On natural variability and predictability. Mon. Wea. Rev., lU, 581-585.

Shukla, J. and D. Gutzler, 1983: Interannual variability and predictability of 500 mb

geopotential heights over the Northern Hemisphere. Mon. Wea. Rev., 111, 1273-
1279.

Stefanick, M., 1981: Space and time scales of atmospheric variability. J. Atmos. Sci., 38,

988-1002.

Suarez, M. J. and L. L. Takacs, 1995: Documentation of the Aries-GEOS Dynamical

Core:Version 2. NASA Tech. Memo. No. 104606, Volume 5, 58pp. [Available from

Goddard Space Flight Center, Greenbelt, MD 20771.]

Takacs, L. L., A. Molod and T. Wang, 1994: Goddard Earth Observing System (GEOS)

General Circulation Model (GCM) Version 1. NASA Tech. Memo. No. 104606,

Volume 1, 100pp. Goddard Space Flight Center, Greenbelt, MD 20771., Technical

Memorandum 104606. [Available from Goddard Space Flight Center, Greenbelt,

MD 20771.]

Trenberth, K.E., 1976: Spatial and temporal variations of the Southern Oscillation. Quart.

J. Roy. Meteor. Soc., 102, 639-653.

Trenberth, K. E. 1985a: Persistence of daily geopotential heights over the Southern Hemi-

sphere. Mort. Wea. Rev., 113, 38-53.

193



Trenberth,K. E. 1985b:Potentialpredictabilityof geopotentialheightsovertheSouthern
Hemisphere.Mon. Wea. Rev., 113, 54-64.

Wang, M. and J. N. Paegle, 1996: Impact of analysis uncertainty upon regional atmo-

spheric moisture flux. 3". Geophys. Res., 101, 7291-7303.

Zwiers, E W., 1987: A potential predictability study conducted with an atmospheric gen-

eral circulation model. Mon. Wea. Rev., 115, 2957-2974.

194



Previous Volumes in This Series

Volume 1

September 199.{

Documentation of the Goddard Earth Observing System

(GEOS) general circulation model - Version 1

L.L. Takacs, A. Molod, and T. Wang

Volume 2

October 199_

Direct solution of the implicit formulation of fourth order

horizontal diffusion for gridpoint models on the sphere

Y. Li, S. Moorthi, and J.R. Bates

Volume 3

December 199_
An e_cient thermal infrared radiation parameterization for
use in general circulation models

M.-D. Chou and M.J. Suarez

Volume 4

January 1995
Documentation of the Goddard Earth Observing System

(GEOS) Data Assimilation System - Version 1

James Pfaendtner, Stephen Bloom, David Lamich,

Michael Seablom, Meta Sienkiewicz, James Stobie,
and Arlindo da Silva

Volume 5

April 1995

Documentation of the Aries-GEOS dynamical core: Version 2

Max J. Suarez and Lawrence L. Takacs

Volume 6

April 1995

A Multiyear Assimilation with the GEOS-1 System:
Overview and Results

Siegfried Schubert, Chung-Kyu Park, Chung-Yu Wu,

Wayne Higgins, Yelena Kondratyeva, Andrea Molod,

Lawrence Takacs, Michael Seablom, and Richard
Rood

Volume 7

September 1995

Proceedings of the Workshop on the GEOS-1 Five-Year
Assimilation

Siegfried D. Schubert and Richard B. Rood

195



Volume 8

March I996

Volume 9

March 1996

Documentation of the Tangent Linear Model and Its Adjoint
of the Adiabatic Version of the NASA GEOS-1 C-Grid GCM:

Version 5.2

Weiyu Yang and I. Michael Navon

Energy and Water Balance Calculations in the Mosaic LSM

Randal D. Koster and Max J. Suarez

Volume 10

April 1996

Dynamical Aspects of Climate Simulations Using the GEOS
General Circulation Model

Lawrence L. Takacs and Max J. Suarez

Volume 11

May 1997

Documentation of the Tangent Linear and its Adjoint Models
of the Relaxed Arakawa-Schubert Moisture Parameterization

Package of the NASA GEOS-1 GCM (Version 5.2)

Weiyu Yang I. Michael Navon, and Ricardo Todling

Volume 12

August 1997

Comparison of Satellite Global Rainfall Algorithms

Alfred T.C. Chang and Long S. Chiu

196





REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reportingburden for this collectionof information is estimated to average 1 hour per response, includingthe time for reviewing instructions,searchingexistingdata sources,
gathering and maintaihing the data needed, and completingand reviewingthe collectionof information. Send comments regardingthis burden estimate or any other aspect of this
collection of information,includingsuggestionsfor reducingthis burden, to WashingtonHeadquarters Services, Directorate for Information Operationsand Reports, 1215 Jefferson
Davis Highway, Suite 1204. Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1, AGENCY USE ONLY (Leave b/ank) 2, REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1997 Technical Memorandum
4. TITLE AND SUBTITLE

Technical Report Series on Global Modeling and Data Assimilation

Volume 13--Interannual Variability and Potential Predictability in

Reanalysis Products
6. AUTHOR(S)

Wei Min and Siegfried D. Schubert

Max Suarez, Editor
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES)

Data Assimilation Office

Climate and Radiation Branch

Goddard Space Flight Center
Greenbelt, Maryland

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS (ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

11. SUPPLEMENTARYNOTE'S

Wei Min: General Sciences Corporation, Laurel, Maryland

5. FUNDING NUMBERS

Code 910.3/913

8. PEFORMING ORGANIZATION

REPORT NUMBER

97A00357

10. SPONSORING I MONITORING
AGENCY REPORT NUMBER

TM-97-104606, Vol. 13

12a. DISTRIBUTION ! AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category: 46

Availability: NASA CASI (301) 621-0390.

13. ABSTRACT (Maximum 200 words)

The Data Assimilation Office (DAO) at Goddard Space Flight Center and the National Center for Environ-
mental Prediction and National Center for Atmospheric Research (NCEP/NCAR) have produced multi-year

global assimilations of historical data employing fixed analysis systems. These "reanalysis" products are

ideally suited for studying short-term climatic variations. The availability of multiple reanalysis products also
provides the opportunity to examine the uncertainty in the reanalysis data. The purpose of this document is to

provide an updated estimate of seasonal and interannual variability based on the DAO and NCEP/NCAR

reanalyses for the 15-year period 1980-1995. Intercomparisons of the seasonal means and their interannual
variations are presented for a variety of prognostic and diagnostic fields. In addition, atmospheric potential

predictability is re-examined employing selected DAO reanalysis variables.

14. SUBJECT TERMS

DAO, NCEP/NCAR, reanalysis products, seasonal variability, interannual variability

17. SECURITY CLASSIRCATION 18. SECURITY CLASSIRCATION 19. SECURITY CLASSIRCATION

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified
I

NSN 7540-01-280-5500

15. NUMBER OF PAGES

218

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89)


